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We define a program minimax absorption of a target in a game of encounter of 

a conflict-controlled motion with a given set and we construct sufficient cond- 
itions for the successful solution of this problem. 

1. Statement of the problem. We consider an intrinsically linear controlled 
system described by the vector differential equation 

d~/Idt=A(t)J+f(t,u,u), u E p, vEQ (1.1) 

Here X is the n-dimensional phase vector of the system, u and v are the r-dimens- 
ional control vectors used by the first and second conflicting players, respectively, P 
and Q are bounded closed sets, the matrix-valued function A (t) and the vector-valued 
function f (t, U, U) are assumed to be continuous. Let the symbol (z}m denote the 
vector composed from the first m- coordinates of vector 2. Under the conditions of the 

problem we are given a bounded, closed and convex setM in the space of vectors 

{&I l 
An initial position {t,, x0) is fixed. The first player’s aim is to ensure the 

contact of the point {x [t]}, with set M, while the second player tries to prevent this 
contact. 

Below we shall be interested in the problem only from the standpoint of the first player 
who needs to ensure contact under all possible actions of the oponent. Let us make this 

problem, facing the first player, more precise. A function u (t, x) which associates 
a closed set U (t, z) c P with each possible position {t, ~1 (t > t,) is called the 

first player’s (pure) strategy U (t, x) . The symbolF (t, x; u) denotes the convex 
hull of the set of all vectors f (t, U, v) for u from U (t, 2) and u from Q. A strategy 
U is said to be admissible if the sets F (t, x; U)are upper-semicontinuous relative to 
inclusion with respect to the variation of the position {t, X}. Any absolutely continuous 

function IC [t] satisfying the initial condition x [t,] = x,, and, for almost all t E 
E [to, 61 satisfying the contingencies 

dz [t] / at E A (t) 5 ItI + F (4 5 [tl; f-9 (1.2) 

is called the motion z [t] = x It; to, x0, Ul from the position {to, x0}, generated 

on the interval [to, 6] by the strategy U. The existence of motions z [t] is ensured by 

the well-known existence theorems for the solutions of the equation in contingencies 
(1.2) [l]. We say that a strategy I?J ensures, from the position {to, x0} , a ContaCt of 

the motion x \t] of (1.1) with set Mat the instant $j (by the instant 61, if any motion 

L [t] = 5 [t; to, x0, UJ satisfies the conditions {X [6]}, EM ({x [t]},, E M at 
least once for t E [to, e]).The first player’s problem is to seek 6 and U such that the 
strategy [7 would ensure contact at the instant 6 (by the instant 6). 

From the suggested formalization of the problem it follows that methods of forming 
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the control u from a very wide class are admissible. In particular, the choice of the 
value u [t] can be based on information on the value u. [tf realized at this same instant 
f. To the contrary, the choice of the control u [t] is here made only on the basis of 

information on the position (r, 2 [t]} realized. 

A similar problem for a linear system described by the equation 

d.z / dt = A (t) z + B (t) u - C (t) v 

was examined in f2] wherein also the appropriate bibliography was cited. The notion, 
used therein, of a program absorption of the target set M, applied in the linear case for 

solving the original position game problem of encounter, is here not wholly suitable for 
the system (1.1) which is nonlinear in u and u if we stay within the framework of pure 

strategies U (t, z) defined above in correspondence with 121. If we pass on to the mixed 
strategies {p (du) / t, z), then the notion of a program mixed absorption of set M, suitable 
for the encounter problem in the case of system (1. l), is obtained by an almost autom- 

atic transformation of the notion of program absorption in @& Here only the program 

control-functions u (r) and v (I) are replaced by the mixed program control-measures 
p (du) / t and Y (du) / t [3]. However, in the framework of pure strategies U (t, 4 the 
transition from the linear system to system (1.1) requires an even more essential trans - 
formation of the notion of a program absorption of target M if we have it in mind to use 
this notion for solving the original position encounter problem from the point of view of 

the first player’s interest. To the contrary, if we have in mind the solution of the posi- 

tion evasion problem, of interest to the second player, the notion of program target ab- 
sorption, used in p], which now may be named maximin to distinguish it, remains 

suitable for this solution aho in the case of system (I, 1). 

The purpose of the present paper is to define the notion of pro g r a m m i n i m a x 

a b so 1: p t i o n of setM by process (1.1) and, having delineated the regular case of this 
absorption, to substantiate the minimax extremal aiming rule which forms the minimax 
extremal strategy which in this regular case ensures the program minimax absorption of 

set Mfrom a given initial position {t,,, X,} by an instant 6,. Since the arguments follow 

much the same plan as in [2], we omit many of the complications and examine in 
greater detail only those fundamental properties of the program minimax absorption of 
.J& being considered now, which distinguish it from the program maximin absorption of 
M considered in @j. 

2. Minlmrx target rb,orptlon. Suppose that a certain number 6 > to has 
been chosen. By V (t, u) we denote a function which associates a set V (t, u) E Q 
with every pair (t, u), where t E [lo, @] and u E P, By j’ ft; V) we denote the 
closed convex hull of the set of vectors f (t, U, v) for all v from v (t, u) and u from 
P. We admit only those functions v (r~ U) f or which the sets V (t, U) are closed and 
the setS F (t; V) are upper-semicontinuous relative to inclusion with respect to a change 
in the variable I on the interval [to, @). We define a motion X (t)=X (t; t,, z*, v) 
as any absolutely continuous function X (t) satisfying the initial conditionz (t*) = LX* 
and, for almost all t from It*, 61 , satisfying the contingencies 

ds (t) /’ dt ~5 A (t) 2 ft) + F 6; v) (2.4) 

BY G tt*, x*, 6; V) we denote the attainability region in the space of (X), (@I, p. 399) 
from the position (t*, 
v) of(2.1). It. k 

x*) by the instant 6 > t,for the motions X (t) = x (t; t,, x*, 

1s nown that region G is a bounded, convex and closed set 
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We say that a program minimax absorption of setM by the process (1.1) at the instant 

@ >i* OCCUIS from the position {t*, z*} if the regior G intersectsM for every choice 
of an admissible function v (t, u) . In other words, a program minimax absorption of 
setMby the process (1.1) at the instant 6 > t, occurs from the position {t*, x*} if 

and only if for every choice of an admissible function J7 (t, U) at least one motion 

I (t)=x (C t,, x*rt v) of (2.1) hits onto M at the instant 6 , i. e. , the inclusion 

{z (6)}, E M is realized. By M, we denote closed Euclidean e- neighborhoods of 

set&!. Let us (t*, x*, 6) be the lower bound of those values of a > 0 for which there 

occurs the program minimax absorption of set A4, by the process (1.1) at the instant 
6 from the position {tx, Z*> , By analogy with [Z] (p. 108) we name the quantity es 

(6 5, @) the minimax hy~thet~cal mismatch. Let G (t,, z*, 6; Vfo be that attaina- 
bility region G (t*, x*, 6, v) whose distance corny equals 80 (&, 5*, @).(For the 

present we assume a priori the existence of such nonempty regions Co under the 
condition e, > 0; we verify their existence later on). We call a case regular if for every 
choice of position (t*, X:*} at which es (t*, x*, 6) > 0 all regions G, intersect Me0 
along one single hyperplane. For a position {t*, X*} the number 6, >, t, is called the 

(first) instant of program minimax absorption of setM by process (1.1) if this number 
o0 is the smallest of the numbers 6 > t, for which there occurs a program minimax 

absorption of set A?’ by the process (1.1) at the instant 6 from the position {t*, x*} . 

3. Minimrx hypothetic&l mf#m(Ltch. We set up an expression for comp- 
uting the quantity ea. Suppose that a certain admissible function V(t, U) has been chosen. 
The region G (t*, CC*, 6; qintersects the set M, if and only if the closed *I(- ME)- 
-neighborhood” G (t*, 2*, 8; IJ)(-ME) of the region G (t+, z,, 6; v) contains the point 
{s), = O.(The region Gc-M,) is made up of all vectors 4 = g - h + k, where 

g CG G, h E M and I! k I/< E, where 11 k II d enotes the Euclidean norm of the vector.) 

But a convex bounded closed set G~_M,) is the intersection of its support halfspaces Hi 
(see Fig. 1) 

0 

I’ {z}~ > drip Z’q, q E G CL xa t 6; V)(+ (3.1) 

J4 
t 

Here 1 is the m-dimensional unit vector, and the prime denotes 
the transpose. 

G (4,) 
By the definition of the set G (t*, x*, 6; V)(_M,) and of the 

attainability region G (t*, x*, 6; v) and in correspondence 
with (2,1), for Q CZ Gt-pn,, we have 

Q=@@)JtrV-h+li== 

Fig. 1. 
= {x (6, t*) z* + j x (6,k) w (t) dtls, - h + k (34 

t* 
Here x (t!, t) is the fundamental matrix of solutions of the equation 

dx / dt = A (t) ST, w (t) E F (t; v), h E Jf, II k It G 8 

From (3.1) and (3.2) it follows that the point (z}~ = 0 lies in the region G (2,, 2*, 
6; Q-N,) if and only if the condition 
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is fulfilled for any unit vector 8, From (3.3) it follows that the quantity E,, = eg (t*, 
z*, @) is determined by the relation 8 

80 = SUPII 1 II=I (i isup~ mine(f) j I’ ix (6, t) w (mn dt J + 
I 

+ 2’ (X (14, t*) x& - maxh l’h (3.4) 

if the right-hand side of this equality is nonnegative; otherwise, 8, (t*, z*, a) = 0. 
Let US verif) that the upper bound over all admissible functions V (1, U) ocurring within 

the brackets in the right hand side of (3,4), is achieved on some admissible function 

V, (t, U). To do this it suffices tochoose as the setsVI (t, u:those sets which are made 
up of all vectors U, from Q satisfying the condition 

I’ (x (+,t) f (t, U,U&, = IwkQ (I' ix te9 t, f 67 Uy u))mf (3.5) 

Indeed, the function VI (t, U) is admissible because we can verify that the set> &‘I (t, U) 

defined by condition (3.5) are closed and upper-semicontinuous relative to inclusion with 

respect to changes in d and U. Furthermore, for every value of u and for any u , from 
(3.5) follows the inequality 

1’ {X (*, t) f (k u, V,)}m > 1 {X (6, t) f (G u, v)Ln 

From this inequality follows 

min,,p (I’ {X (6, t) f (t, 21, v~)),) 2 minuEp (I’ (X (6,t) f ftl, % ~)I84 (3.6) 

or, by definition of F (t; V), 
min (I’ (X (6, t) w),) 2 (3.7) 

w~F(f; VI) 
_y;ny, 0 (X (6, if 4m) 

for any admissible function V . 
The left-hand sides of (3.7) and (3.6) equal the quantity 

min,,=p maxvEQ (t!’ {x (6, t) f (t9 IL9 u))d = ’ ct I “7 I) 

It is a continuous function of variable t. From this and from the properties of the sets 
F (t; V,) follows the existence of a measurable function WI (t) E F (t; VI), which for 
almost all t satisfies the condition 

1’ (X (8, t) WI (L)), --- WEf$;vI) (1’ ix f@, t) WL) (3-S) 

Further, from (3.7) and the properties of sets F (t; v) it follows that whatever be the 
admissible function V (t, U) we can find a measurable function w (t) E F (t; V) for 
almost all t, for which 

By comparing the inequalities obtained, we arrive at the needed relation 
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This relation proves that the upper bound with respect to V in (3.4) indeed is achieved 
by an admissible function vg (t, U). Moreover, it also follows from the arguments pre- 
sented that the quantity E, (t*, x*, 6) in (3.4) is determined by the equality 

8 

eO = maxII 1 If=1 (s mit&@ max,Q 1’ {x (6, t) f (t, u, v)}m dt + 

‘* + I’ {X (6, t*) 2*jm - maxhEn Z’h) 
if the right-hand side of this equality is nonnegative; otherwise, 8, (tel t.,., 

r. - . . 

(3.9) 
0)=0. 

The arguments presented show also that when EQ (t+, X*, U) ) U there indeed do exist 

regions G (t*, x*, 6; J%, whose distance from &fequHls the quantity (so. These att- 
ainability regions are generated by the admissible functions V = Vi (t, U) correspond- 

ing to those values of I which maximize the right-hand side of (3.9). Further, as in r2]. 

from (3.9) we conclude that a case is regular if and only if for e, > 0 the maximum in 

the right-hand side of (3.9) is reached only on the unit vector 1” (t*, X*, e). For this. in 
its own turn, it is necessary and sufficient that the quantity being maxiniized in (3.9)) 

taken with the opposite sign, be a convex function of the variable 1. 

Finally, be repeating with necessary but minor changes the discussion from [2] (p.149) 
we can verify that in the regular case the quantity E4 (t, t, I?) is a differentiable func- 

tion of the variables t and z in the region E, (t, X, 9) > 0 for a fixed value of 6 , 
and its continuous partial derivatives dEg / &, a&, / 8Xi at the point (t, X} are deter- 
mined by the relations 

aeo 
at= 

- iIIiI&=p maxrEQ [s’(t) f (h u, OfI - s‘ tt)lA @Is 

a&* / a:ti -1 Si (t) (i=-1,2,...,rq (3.10) 

Here S (z) is a vector-valued function satisfying the conditions 

ds (z) / dz - - A’ (t) s (z) o\<r<w (3.11) 

s’ (6) I=: (I;, . . . , 11, 0, . . . , 0) 

moreover, 1” (t, X, 6) is the vector which solves problem (3.9) (for t II: t*, Z = Z*). 

4, Mialmrx cxtremrl rlmlng, We consider the regular case. Suppose that 
a position {t*, X,)is realized at some instant t = t, and, moreover, that e, (t*, 
X,, @ > 0 for some instant 6 fixed beforehand. From the material in Sect. 3 it 
follows that there exists a certain attainability region G (t*, X*, 6; 7,~) which is 
tangent to the e. -neighborhood MI,of set M, and every other attainability region 

G (t*, x*, 6; V) for the motion I (t; t,, X*, V) of (2.1) ah0 necessarily intersects 

n/l,, Let {XL = go be one of the points in the space of {Xjm at which the sets &f,, 

dJld C:(t*, X*, 6; VP) intersect. By the regularity condition all such points lie on one 

hyperplane Z”(t*, z*, 6) {X},=a.Since, furthermore, the point go lies on the boun- 

dary of the region G (t*, X*, 6; VP), the motion X (t; t.+, z.+, J’,.) of (2.1). which 
has been led to this point at the instant t = e,is optimal and the control W” (t) E 

E F (t; V,.) (t* < t < 0) generating it should satisfy the appropriate condition of 
the maximum principle [4]. In the case being considered it is convenient to write this 

condition as a minimum condition 

s) (t) 28 (t) = min fs’ (t) 201 (4-i) 
WEF (f : Vt”) 
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where S (t) is the vector-valued function defined by conditions (3.11). The maximum 

condition has been replaced by a minimum condition for the reason that the vector 1” 

determinirg the boundary condition in (3. ll), has the sense of not the outward but the 

inward normal to the attainability region G (Fig. 1). 

Since S’ (t) = (lt”, . . . . Z,“, 0, .,., 0) X (6, t), the function w0 (t) from (3. Y) 
with 1 = 1” (t*, x*,6) just satisfies condition (4.1). 

NOW, by carrying over to the case being considered the definition in [2] (pp. 115-121) 

of extremal aiming, we say that every control IB, from the set of all values w, (t*) E 
E F (t,; Vp), which satisfy condition (4.1) with’ t = t,, effects a minimax exrr 

em a 1 a i m in g of the motion of (2.1) from the position {t*, LX*} towards one of the 

points &, by the instant 6. In correspondence with this, the minimax extremal strategy 

u, is given by the set u, (t, z), which at each position {t*, z*} for e. (t,, x*, 

6) > 0 are made up ot all values of U, satisfying the minimax condition 

minuQ maxuEQ [s’ (t*) f (t*, k v)] = maxuEQ 1s’ @*) f tt*? ht u)l (4.2) 

while for Ed (t, , 5*, 6) = 0 we set U, (t, 2~) = P. 

It can be verified that an extremal strategy is admissible. Further, from conditions 

(4.2) and from expressions (3.10) it follows that the equality 

max, [tl ! deo (t’ :titl’ ‘) ju, = minu max, ItI ( d&O (t’Jt[‘l’ *) jv = 0 (4.3) 

is fulfilled in the region EO > 0. Here the symbol (de, (t, z [t],s) / dt)U denotes the 

total time derivative of the fiinction e. (t, x [t], 6) along the motion x ItI of system 

(1.1) under a chosen strategy (/, i.e., the total derivative with respect to time t of the 

function e0 (t, 5 Itl, 6) 1 g y a on an solution 5 121 of the equations in contingencies (1.2). 

Then, by repeating with appropriate changes the discussions in c2] (p. 153), we can con- 

vince ourselves of the validity of the following assertion. 

Theorem. Suppose that for the initial position {to, x0} there exists the instant 

?j,, of program minirnax absorption of setM and that for this value of 6 = tiothe case 

is regular. Then for the fixed value of 6 = 6, the extremal strategy u, (t, x) ensures 

the contact of the motion x [t] z=- x It; to x0, U,] with the set ,rl/l by the instant 6,, so 

that for every motion 5 [t] := 5 [t; to, x0, U,] we have {Z [s,]},~ ;M. 

Note. If in the course of things a position {t*, s*} is realized for which e. (t*, J*I < 

.< fro ito, x0), then, beginning with the instant &, we can pass on to an extremal strategy 

L, corresponding now to a new value of the absorption instant 6, (t*, 5,) (under the 

assumption that the case remains regular). 
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